Skip to main content

Measuring Real-time Gene Expression

 



A study in BMC Biotechnology correlates real-time gene expression with movement and behavior for the first time. The proof-of-concept experiment in fruit flies opens a new door for the study of genes' influence on behavior.

The authors, from the University of Southern California and Cambridge University, tagged genes with a harmless molecule known as Green Fluorescent Protein (GFP).

drosophila

When a gene was active, the flies gave off a fluorescent glow. A camera fitted with a special filter detected the glow, whose intensity was then measured automatically.

At the same time, a multiple-camera system designed by first author and USC graduate student Dhruv Grover tracked the movement of each fly in three dimensions.

The result: an exact picture of gene activity at every point and time of a fly's life.

"We can correlate behavior with certain genes and find genes that may be responsible for certain behaviors," Grover said.

The 3-D tracking and real-time measurement of gene activity are both firsts in live animal studies, the researchers said.

The methods also delivered new insights on aging in the fruit fly, long a model organism for the study of biological processes.

The levels of two genes, hsp70 and hsp22, spiked in the hours before the death of a fly.

The genes are known to respond to oxidative stress. Lead author John Tower, associate professor of molecular and computational biology at USC, speculated that the genes were reacting to a sharp increase in oxidative stress as the fly began dying of natural causes.

"We're really interested in why the fly is dying, and this is potentially a good inroad to being able to study that," he said.

Oxidation – the chemical process behind rust and food spoilage – takes place constantly in the body as a byproduct of metabolism.

"Burning that fuel to produce energy is toxic," Tower said.

The real-time methods developed by Tower's group painted the poignant picture, even if only for flies, of an animal's last attempt to fight off death.

Other animals soon will be studied the same way, Grover predicted.

"The beauty of it is now, if GFP can be linked to any gene … you could track it over time, and you could look at the expression of that gene. It's much easier than looking at it through the microscope, having a grad student sit there and take pictures every few hours and look at the (gene) expression change. This is just running on its own," he said.

It was Grover's thesis adviser Simon Tavare, a professor of molecular and computational biology at USC and faculty member at Cambridge, who suggested how to track flies in three dimensions.

"After that we started to think about, 'Can we look at the expression of certain genes over time, as they're moving?' " Grover recalled.

"That would be really interesting."

Even more interesting, for everyday life, would be a mosquito zapper guided by the tracking system – an application that Grover and Tower say just might be feasible.

Comments

Popular posts from this blog

Influenza A detection by MDCK cell line

The influenza A (IA) virus is the principal cause of the outbreaks of flu. A large number of laboratories participate in the worldwide surveillance of influenza virus activity and contribute to the early recognition of newly emerging epidemic strains. Differentiation between influenza A and B viruses and determination of the subtypes of influenza A virus isolates are the first steps in the characterization of influenza viruses. This analysis is traditionally done by hemagglutination inhibition (HI) tests with specific antisera raised in ferrets, chickens, or sheep. The diagnosis of Influenza A is largely clinical. Nevertheless, it is necessary to carry out some form of rapid antigenic diagnosis and the culture of respiratory samples to confirm the etiology of the respiratory disease and to determine the antigenic characteristics of the epidemic strains. Although the “gold standard” isolation technique is inoculation in embryonated hens’ eggs, the technical difficulties involved and t...

WORKSHOP ON: Prospecting Traditional Herbal Therapy to Modern Drug Discovery

The Institutional Biotech Hub, Department of Biotechnology, Gauhati University is organizing a 7 days’ workshop cum training program on “Prospecting Traditional Herbal Therapy to Modern Drug Discovery” from 22nd May to 28th May 2017. The last date for receipt of application form is 15th May 2017. Interested participants may visit the following link for details and to download the application form. http://www.gauhati.ac.in/notification/1492772527biotech%20hub%20workshop2017.pdf

SOME INSTITUTE FOR SUMMER TRAINING/FINAL YEAR DISSERTATION/INTERNSHIP..

Center For Cellular and Molecular Biology (CCMB) <http://www.ccmb.res.in/>. Central Drug Research Institute (CDRI) <http://www.cdriindia.org/> Central Food Technological Research Institute (CFTRI) <http://www.cftri.com/> Central Institute of Medicinal and Aromatic Plants (CIMAP), <http://www.cimap.res.in/> Central Leather Research Institute (CLRI) Chennai <http://www.clri.org/> Institute of Genomics and Integrative Biology (IGIB)<http://www.igib.res.in/> Institute of Himalayan Bioresource Technology (IHBT),<http://www.ihbt.res.in/> Indian Institute of Chemical Biology (IICB)<http://www.iicb.res.in/> Indian Institute of Chemical Technology (IICT), <http://www.iictindia.org/> Institute of Microbial Technology (IMTECH)<http://imtech.res.in/> Indian Toxicology Research Center (ITRC) <http://www.itrcindia.org/> National Chemical Laboratory (NCL) Pune <http://www.ncl-india.org/> National Environmental Engineering Resear...